

Visual processing in children with dyslexia and children with autism

Dr Cathy Manning

School of Psychology & Clinical Language Sciences, University of Reading Department of Experimental Psychology, University of Oxford

c.a.manning@reading.ac.uk

Overview of the talk

- Background to visual processing in dyslexia
- Background to visual processing in autism
- Our study
- Research priorities
- Q&A

Overview of the talk

- Background to visual processing in dyslexia
- Background to visual processing in autism
- Our study
- Research priorities
- Q&A

Visual processing in dyslexia: an obvious starting point?

"Congenital word blindness"

Percy F., 14-year-old boy with reading difficulties:

"He seems to have no power of preserving and storing up the visual impression produced by words – hence, the words, though seen, have no significance for him... His eyes are normal... his eyesight is good" (William Pringle Morgan, 1896)

Visual processing in dyslexia: an obvious starting point?

Samuel T. Orton (1930s)

Letter reversals (e.g., b / d) due to differences in how the two halves of the brain function

(no longer thought to be true, Lachmann & Geyer 2003)

Visual differences in dyslexia are not restricted to words

Visual processing in dyslexia: a contemporary theory

Magnocellular / dorsal stream: "where" pathway

Parvocellular / ventral stream: "what" pathway

Figure reproduced from Sheth & Young, 2016 https://doi.org/10.3389/fnint.2016.00037

Lovegrove, 1984; Stein 2001, 2019

Visual processing in dyslexia: a contemporary theory

Figure reproduced from Sheth & Young, 2016 https://doi.org/10.3389/fnint.2016.00037

Lovegrove, 1984; Stein 2001, 2019

Visual processing in dyslexia: a contemporary theory

Visual motion processing relies on the dorsal/magnocellular system

Dyslexic people have difficulties in motion coherence tasks (Benassi et al., 2010)

Causal or not?

Yes!

- Children with dyslexia are less sensitive to motion information even before they learn to read (Boets et al., 2011; Gori et al., 2016)
- Training the magnocellular-dorsal pathway leads to improved reading in those with dyslexia (Gori et al., 2016)

No!

- Not a strong relationship between magnocellular/dorsal functioning and reading
- Not everyone with dyslexia has motion processing difficulties (Conlon et al., 2012)
- Magnocellular/dorsal functioning improves after reading intervention (Olulade et al., 2013)

Causal or not?

- The jury is still out...
- Differences in visual tasks can tell us about how the brain works differently in dyslexic individuals
- Difficulties with processing motion information could have implications for children's lives

Overview of the talk

- Background to visual processing in dyslexia
- Background to visual processing in autism
- Our study
- Research priorities
- Q&A

Visual processing in autism

 Another developmental condition but with a distinct profile

Sensory symptoms

Sensory symptoms: hyper-reactivity, hypo-reactivity, sensory seeking

Visual processing in autism

- Attention to detail at expense of whole (Frith, 1989)
- Atypical development of magnocellular-dorsal stream (Braddick et al., 2003)

Autistic people have difficulties in motion coherence tasks, like in dyslexia

(van der Hallen et al., 2019)

Open question

Both dyslexic and autistic people show differences in motion processing, but is it for the same reasons?

nb. Currently few studies directly compare the two developmental conditions

Multiple stages of processing

Sensory encoding

Accumulating evidence

Making a decision

Making a response

Multiple stages of processing

Sensory encoding

Accumulating evidence

Making a decision

Making a response

Which stages are affected in dyslexia? Does this differ in autism?

Overview of the talk

- Background to visual processing in dyslexia
- Background to visual processing in autism
- Our study
- Research priorities
- Q&A

Techniques that can tell us about different processing stages

The task

The task

Participant characteristics

Age	
Sex	

IQ – Verbal

IQ – Performance

TOWRE Phonemic Decoding Efficiency (PDE) WIAT Spelling

Composite score

TYPICALLY DEVELOPING (n = 50)

10.65 (6.55 – 14.98) 28 M 22 F

110.60 (95 - 127)

109.30 (81 - 145)

111.20 (81 - 153)

105.70 (80 - 127)

108.50 (89.5 - 138.0)

(n = 50)11.08 (7.81 – 14.53) 24 M 26 F 98.56 (77 - 118) 99.40 (72 – 141) 79.16 (51 – 99) 77.86 (58 - 99)

DYSLEXIC

+ 50 AUTISTIC children

78.51 (54.5 - 89.0)

Comparing behavioural responses

Comparing behavioural responses

Dyslexic children are slightly slower and less accurate than typical children

Mathematical modelling: dyslexic children are slower to pick up information in both tasks compared to typical children

Comparing behavioural responses

No clear differences between autistic and typically developing children's performance

Mathematical modelling: autistic children are very similar to typically developing children

EEG

Visual processing (back of the head)

Decision-making (centre of head)

EEG – visual processing

notion coherence
task

motion integration task

Group differences at later timepoints – and only in the motion coherence task – reflecting difficulties filtering out visual noise for both autistic and dyslexic children?

EEG – decision-making

Group differences in brain activity for both tasks around the time of the response. Relates to mathematical model

EEG – decision-making

Also differences in autism group around the time of response

Summary of dyslexia findings

- Dyslexic children are slightly slower and make slightly more errors than typically developing children
- The mathematical model suggests that this is because dyslexic children are less sensitive to motion information
- Dyslexic children also differ from typical children in their brain activity
- Early responses to motion information are unaffected, but differences emerge in later processing stages linked to ignoring visual noise, making decisions and responses

Comparing dyslexia and autism

- Both similarities and differences between autistic and dyslexic children
- Suggests that there are areas of overlap in these two developmental conditions, but also areas of divergence
- Important for understanding the role atypical visual processing plays in these two conditions
- Still work to be done on understanding variability within a condition

Summary

- Visual processing is atypical in dyslexic children e.g., reduced sensitivity to visual motion information
- Dyslexic children pick up motion information more slowly, and have difficulties ignoring visual noise
- We find neural markers of these differences in EEG

Implications and future research

- Not just reading affected in dyslexia differences in visual processing in non-reading tasks
- Visual processing differences may not be causal... but still potentially important
- Helps us understand how the brain develops differently in children with dyslexia
- Does this difference in picking up information extend to other tasks?
- How do other skills (e.g., processing speed, cognitive ability) relate to decision-making and reading difficulties?
- Can we train decision-making to improve reading ability?

Implications and future research

<u>How moving dots are helping us learn more about dyslexia</u> <u>in children – new research (theconversation.com)</u>

Overview of the talk

- Background to visual processing in dyslexia
- Background to visual processing in autism
- Our study
- Research priorities
- Q&A

Research priorities

- Lack of research into what the dyslexia community want researched
- Current research may therefore not align with the dyslexia community's priorities
- Currently, UK research predominantly focuses on biology, brain and cognition
- Focus groups with dyslexia community need more research in other areas
- Survey to be launched in coming months

Q&A

Thanks to the participants, families, schools and organisations who took part

Irina Lepadatu and the Oxford BabyLab Helena Wood Dhea Bengardi Madeleine Mills Amber Heaton

Collaborators:

Nathan Evans Cameron Hassall Laurence Hunt Tony Norcia Gaia Scerif Maggie Snowling Lisa Toffoli

c.a.manning@reading.ac.uk

